Longest Increasing Subsequences of Random Colored Permutations
نویسنده
چکیده
We compute the limit distribution for the (centered and scaled) length of the longest increasing subsequence of random colored permutations. The limit distribution function is a power of that for usual random permutations computed recently by Baik, Deift, and Johansson (math.CO/9810105). In the two–colored case our method provides a different proof of a similar result by Tracy and Widom about the longest increasing subsequences of signed permutations (math.CO/9811154). Our main idea is to reduce the ‘colored’ problem to the case of usual random permutations using certain combinatorial results and elementary probabilistic arguments.
منابع مشابه
3 1 Ja n 19 99 LONGEST INCREASING SUBSEQUENCES OF RANDOM COLORED PERMUTATIONS
Abstract. We compute the limit distribution for (centered and scaled) length of the longest increasing subsequence of random colored permutations. The limit distribution function is a power of that for usual random permutations computed recently by Baik, Deift, and Johansson (math.CO/9810105). In two–colored case our method provides a different proof of a similar result by Tracy and Widom about...
متن کاملIncreasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.
متن کاملGl(n,q) and Increasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing subsequence in non-uniform random permutations.
متن کاملIncreasing Subsequences and the Classical Groups
We show that the moments of the trace of a random unitary matrix have combinatorial interpretations in terms of longest increasing subsequences of permutations. To be precise, we show that the 2n-th moment of the trace of a random k-dimensional unitary matrix is equal to the number of permutations of length n with no increasing subsequence of length greater than k. We then generalize this to ot...
متن کاملLongest Alternating Subsequences in Pattern-Restricted Permutations
Inspired by the results of Stanley and Widom concerning the limiting distribution of the lengths of longest alternating subsequences in random permutations, and results of Deutsch, Hildebrand and Wilf on the limiting distribution of the longest increasing subsequence for pattern-restricted permutations, we find the limiting distribution of the longest alternating subsequence for pattern-restric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 6 شماره
صفحات -
تاریخ انتشار 1999